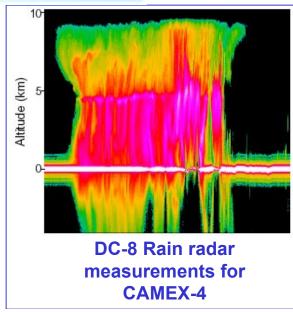
Some thoughts on

Technology Planning, Development and Roadmaps

November 28, 2001 Loren Lemmerman - ESTO

ESTO has been Extraordinarily Successful in Earth Science Technology....

- All awards directly applicable to future Earth Science missions
- All awards highly effective in developing technology products
- Significant deliveries made within fist 3 years of program



Synthetic Thinned Array
Radiometer
(STAR)
8 x 8 Element Test Array

Examples of Round 1 successes

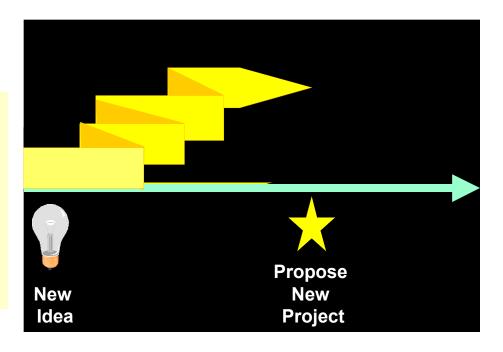
HAMSR
(High Altitude
MMIC Sounding
Radiometer)
measuring
temperature, water
vapor and clouds
for CAMEX-4

But, We Could Do Better

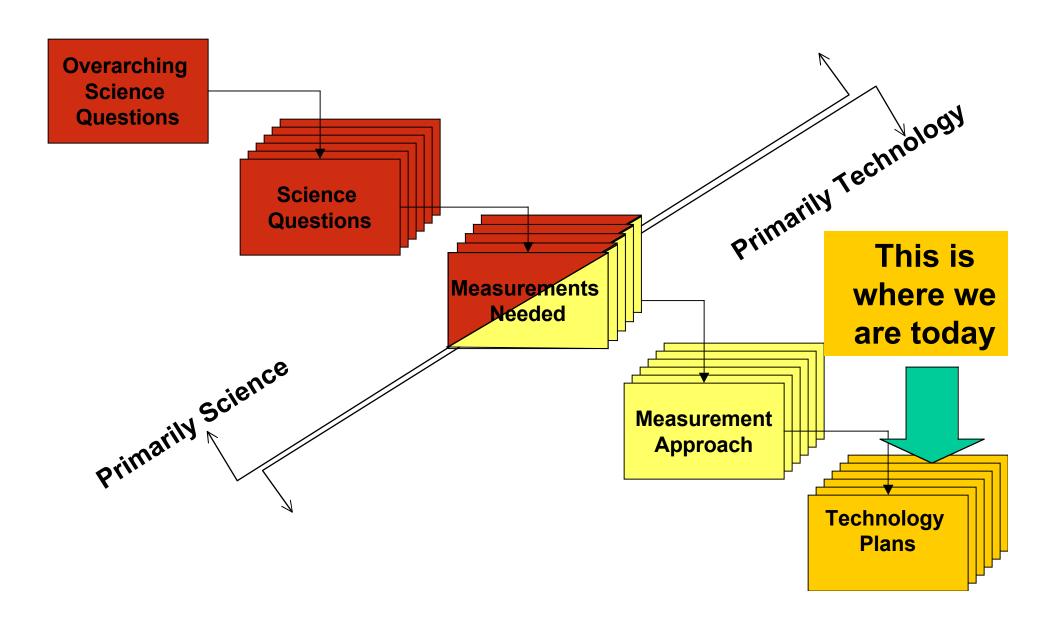
Goal:

Eliminate "Speckled Puppy" Problem

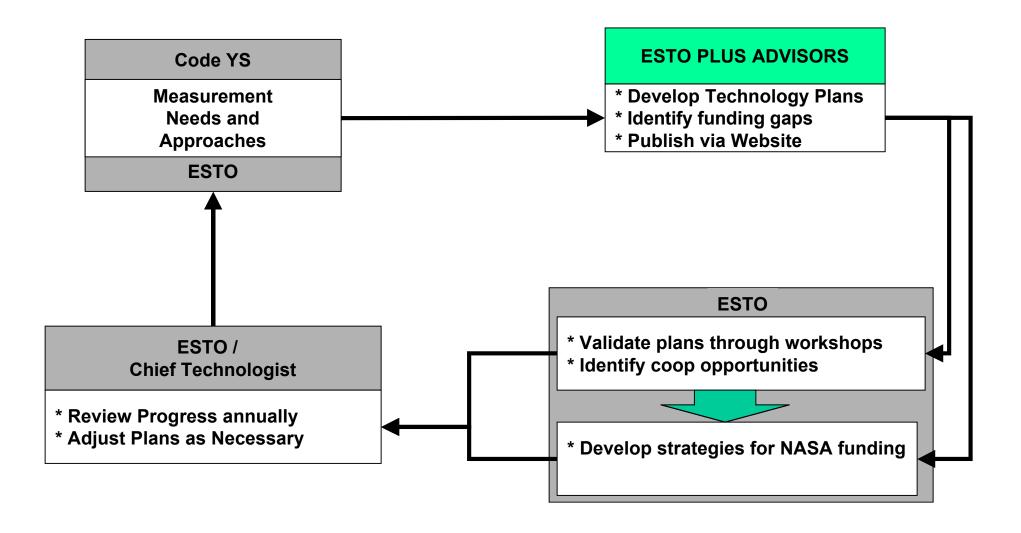
- Understand All the Needs
- Focus on Obtaining Resources


Conclusion:

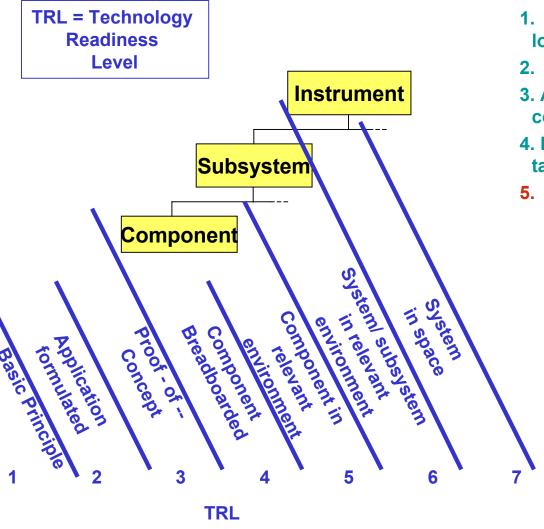
Do more IN-DEPTH Planning


Goal:

Minimize Programmatic New Technology Risk


- Understand the Technology
 Development Sequence
- Assess Technology Readiness at Time of Proposal

Technology Needs Defined by Requirements Flowdown



What is the Whole Process?

Technology Readiness Assessment Critical to Technology Planning

Tutorial: How TRL maps to Technology Products

Technology Planning or Roadmapping Steps

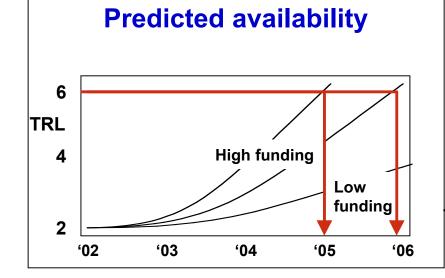
- 1. Decompose future technology product into lowest level components
- 2. Assess current TRL of each component
- 3. Assess cost and time needed to bring each component up the TRL scale
- 4. Develop sequence of addressing technology tasks
- 5. Predict availability based on funds available

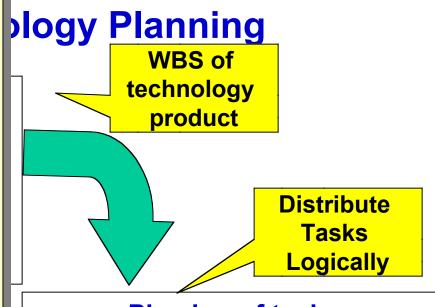
Planning Products

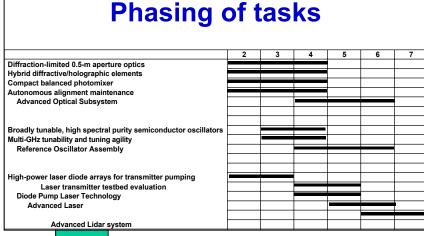
Readiness Dates

Resource Plans

Pictorial representations

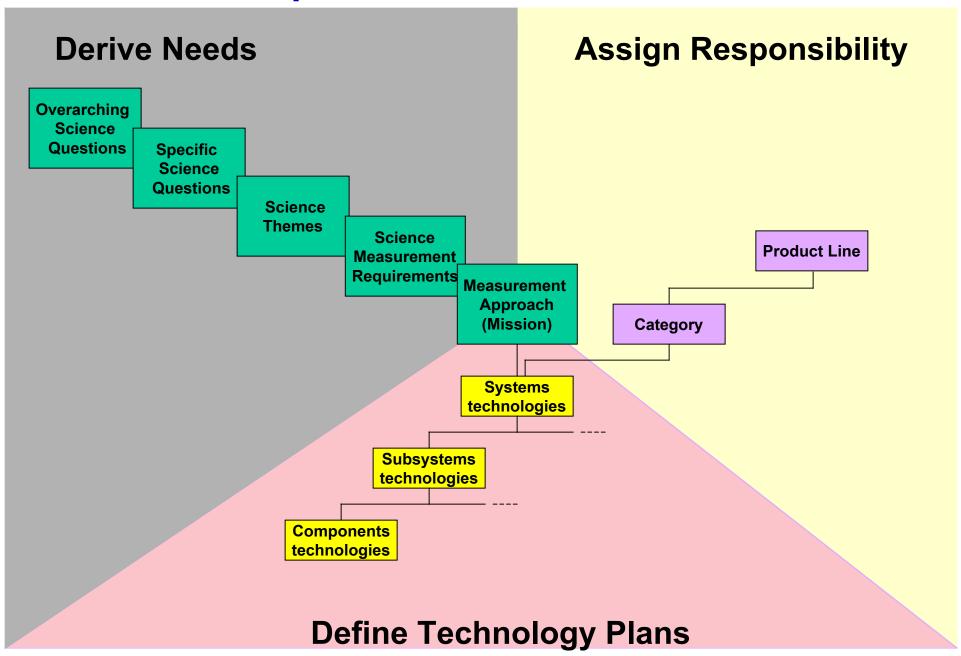

Funding Priorities


lemmerman:


The concept here is the following:

- 1. Understand the problem (be able to develop database of needs)
- 2. Lay out a tentative phasing of tasks that is logical
 - 3. Assess delivery dates that refledt funds available

Affects Delivery



Database of tasks and costs

- Developing database
 - 1. Define desired technology products (tangibles!)
 - 2. Develop product breakdown structure for these products
 - 3. At lowest level (component) perform trl assessment (current status)
 - 4. Estimate cost and schedule required to advance up trl scale
 - 5. Develop task phasing leading to desired technology product
- Estimating delivery dates
 - 1. Roll up costs to subsystem / system level using phasing above
 - 2. For proscribed levels of funding, determine when trl levels can be reached

Top- to - bottom Database

Database Development Defining products

- Begin with WBS already in existence, namely
 - Product line
 - Category
 - Functional product
 - » Task
- Verify Functional Products [systems] in current database
 - Add / delete to improve
 - Modify definitions if appropriate
- Insert subsystem / component levels
 - Functional products [systems] have
 - Subsystems have
 - Components have
 - » Technology tasks

Example of existing database

ı	Missid	Mission Name	Lead Ce	r Product line	Category		Functional product	Task
E	ES-6	Ocean Surface Topography	JPL	Adv Instruments	Passive radiometers,	FTS	3 Band MMIC Radiometer	Repackage IIP breadboard for space
E	ES-6	Ocean Surface Topography	JPL	Adv Instruments	Passive radiometers,	FTS	3 Band MMIC Radiometer	Test for performance
E	ES-6	Ocean Surface Topography	JPL	Adv Instruments	Passive radiometers,	FTS	IF antenna validation	Develop mechanism breadboard
E	ES-6	Ocean Surface Topography	JPL	Adv Instruments	Passive radiometers,	FTS	IF antenna validation	Develop antenna breadboard
E	ES-6	Ocean Surface Topography	JPL	Adv Instruments	Passive radiometers,	FTS	IF antenna validation	Range test of breadboard
E	ES-6	Ocean Surface Topography	JPL	Adv Instruments	Passive radiometers,	FTS	Validate 5 frequency antenna system	breadboard antenna
E	ES-6	Ocean Surface Topography	JPL	Adv Instruments	Passive radiometers,	FTS	Validate 5 frequency antenna system	Integrate with 5 frequency feedhorn
E	ES-6	Ocean Surface Topography	JPL	Adv Instruments	Passive radiometers,	FTS	Validate 5 frequency antenna system	Range test of system
E	ES-7	Stratospheric Composition Measurement	GSFC	Adv Instruments	Passive radiometers,	FTS	Array Microwave Limb Sounder	MMIC Receivers
E	ES-7	Stratospheric Composition Measurement	GSFC	Adv Instruments	Passive radiometers,	FTS	Array Microwave Limb Sounder	MMICs
E	ES-7	Stratospheric Composition Measurement	GSFC	Adv Instruments	Passive radiometers,	FTS	Array Microwave Limb Sounder	Thermal HIS
E	ES-7	Stratospheric Composition Measurement	GSFC	Adv Instruments	Passive radiometers,	FTS	Antenna Systems	Calibration
E	ES-9	Global Precipitation	GSFC	Adv Instruments	Passive radiometers,	FTS	Compact Synthetic Aperture Radiometer	ASIC-based digital correlator
E	ES-9	Global Precipitation	GSFC	Adv Instruments	Passive radiometers,	FTS	Compact Synthetic Aperture Radiometer	Graphite-exopy composite waveguide antenna
E	ES-9	Global Precipitation	GSFC	Adv Instruments	Passive radiometers,	FTS	Compact Synthetic Aperture Radiometer	Lightweight, low power MMIC receiver
E	ES-9	Global Precipitation	GSFC	Adv Instruments	Passive radiometers,	FTS	Compact Synthetic Aperture Radiometer	Spaceborne Precipitation Radar
E	EX-3	Cloud-Radiation Feedback Research	LaRC	Adv Instruments	Passive radiometers,	FTS	Sub-mm Radiometer	Receiver Demonstration
E	EX-3	Cloud-Radiation Feedback Research	LaRC	Adv Instruments	Passive radiometers,	FTS	Sub-mm Radiometer	THz Array Down Converter
E	EX-3	Cloud-Radiation Feedback Research	LaRC	Adv Instruments	Passive radiometers,	FTS	Sub-mm Radiometer	THz Oscillator
E	EX-4A	Soil Moisture and Ocean Salinity Observing	GSFC/JPL	Adv Instruments	Passive radiometers,	FTS	Antenna Technology	Trade Studies
E	EX-4A	Soil Moisture and Ocean Salinity Observing	GSFC/JPL	Adv Instruments	Passive radiometers,	FTS	Synthetic aperture radiometry	2D STAR Instrument
E	EX-4A	Soil Moisture and Ocean Salinity Observing	GSFC/JPL	Adv Instruments	Passive radiometers,	FTS	Synthetic aperture radiometry	Data transfer/interconnects

Defining Products Developing WBS for these products

- Requires that we be able to decompose product logically
- Allows us to perform TRL assessment at consistent levels
 - Provides approach for aggregating lower level TRL information
 - Provides a basis of phasing developments consistent with TRL advancement
 - Separate topic of TAWG

lemmerman:

If we follow the approach recommended up to this point, we will be able to display roadmaps in any one of a number of formats (slides 13-15 are such examples) but with the UNIQUE feature of have some consistency and underlying basis of representation.

Atom manipulation Doppler Cooling of

Atoms

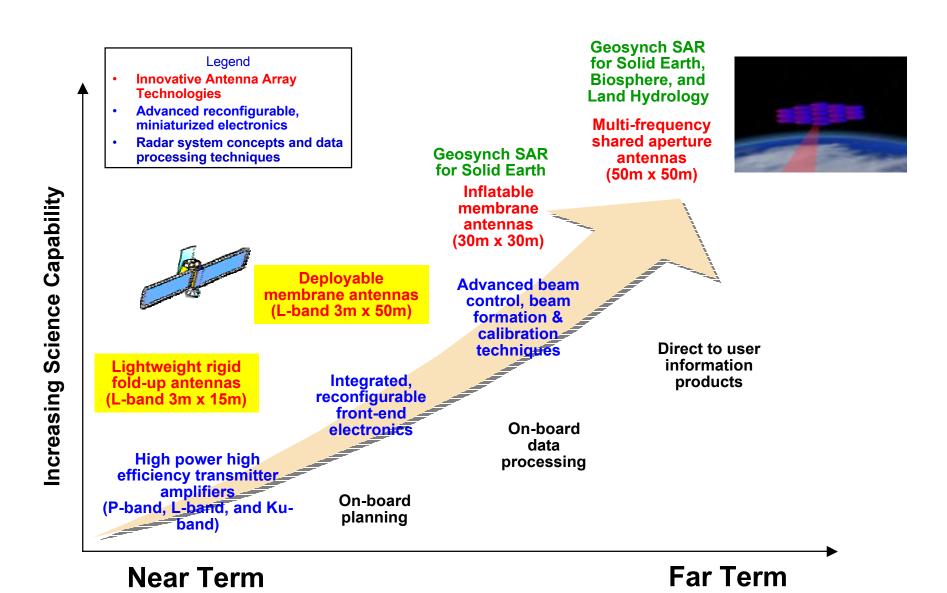
uantum Devices

rol

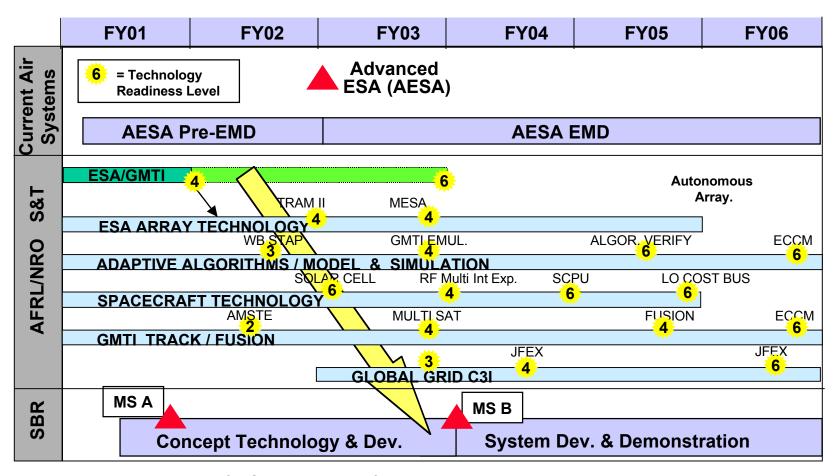
Future Mission Applicability

- GRACE Follow-on
- Hydrology
- Tectonic and glacial motions
- Volcano dynamics
- Geodesy
- · Ice mass flux

Aircraft Demo (Gravity Gradiometer)



TECHNOLOGY PAYOFF:


Stabilized laser systems
Precision Metrology
Precision Gravity Gradiometry

SAR

(Solid Earth, Biosphere, Land Hydrology)

SBR Technology Roadmap

Note: Technology Roadmap for GMTI; AMTI significantly more challenging

AFRL S&T Program on Space GMTI Needed for Milestone B; Leverages JSTARS Developments for RTIP/AMSTE